Exercise 16

In Exercises 15-20, you are asked to solve the wave equation (1) subject to the boundary conditions (3), (4), and the initial conditions (5), (6), for the given data. [Hint: Use (10) and the remark that follows it.]

$$
f(x)=\frac{1}{2} \sin \frac{\pi x}{L}+\frac{1}{4} \sin \frac{3 \pi x}{L}, \quad g(x)=0
$$

Solution

The general solution to the wave equation on a finite interval with fixed ends and arbitrary initial shape and zero velocity,

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L,-\infty<t<\infty \\
& u(x, 0)=\frac{1}{2} \sin \frac{\pi x}{L}+\frac{1}{4} \sin \frac{3 \pi x}{L} \\
& \frac{\partial u}{\partial t}(x, 0)=0 \\
& u(0, t)=0 \\
& u(L, t)=0
\end{aligned}
$$

is (to be derived in later chapters)

$$
u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L} \cos \frac{n \pi c t}{L} .
$$

To determine the constants A_{n}, set $t=0$ and substitute the given function for $u(x, 0)$.

$$
\begin{aligned}
u(x, 0) & =\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L} \\
\frac{1}{2} \sin \frac{\pi x}{L}+\frac{1}{4} \sin \frac{3 \pi x}{L} & =A_{1} \sin \frac{\pi x}{L}+A_{2} \sin \frac{2 \pi x}{L}+A_{3} \sin \frac{3 \pi x}{L}+\cdots
\end{aligned}
$$

Then match the coefficients on both sides.

$$
\begin{aligned}
A_{1} & =\frac{1}{2} \\
A_{2} & =0 \\
A_{3} & =\frac{1}{4} \\
\vdots & \\
A_{n} & =0, \quad n \neq 1,3
\end{aligned}
$$

Therefore, the general solution that satisfies the initial conditions is

$$
\begin{aligned}
u(x, t) & =A_{1} \sin \frac{\pi x}{L} \cos \frac{\pi c t}{L}+A_{3} \sin \frac{3 \pi x}{L} \cos \frac{3 \pi c t}{L} \\
& =\frac{1}{2} \sin \frac{\pi x}{L} \cos \frac{\pi c t}{L}+\frac{1}{4} \sin \frac{3 \pi x}{L} \cos \frac{3 \pi c t}{L} .
\end{aligned}
$$

